2020年新疆成人高考高起点《数学(文)》难点(3)
难点1 函数图象与图象变换
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。
●难点磁场
(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。
难点2 函数中的综合问题
函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力。
●难点磁场
(★★★★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4。
(1)求证:f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值。
难点3 三角函数的图象和性质
三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。
●难点磁场
(★★★★)已知α、β为锐角,且x(α+β- )>0,试证不等式f(x)= x<2对一切非零实数都成立。
●案例探究
[例1]设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。
难点4 三角函数式的化简与求值
三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。
●难点磁场
(★★★★★)已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。
●难点磁场
(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。
难点2 函数中的综合问题
函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力。
●难点磁场
(★★★★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4。
(1)求证:f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值。
难点3 三角函数的图象和性质
三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。
●难点磁场
(★★★★)已知α、β为锐角,且x(α+β- )>0,试证不等式f(x)= x<2对一切非零实数都成立。
●案例探究
[例1]设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。
难点4 三角函数式的化简与求值
三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。
●难点磁场
(★★★★★)已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.
本文标签:新疆成考 新疆成考文数 2020年新疆成人高考高起点《数学(文)》难点(3)
转载请注明:文章转载自(http://www.xjckw.cn)
《新疆成考网》免责声明:
1、由于各方面情况的调整与变化,本网提供的考试信息仅供参考,考试信息以省考试院及院校官方发布的信息为准。
2、本网信息来源为其他媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com。